skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Coudé, Simon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Due to dust grain alignment with magnetic fields, dust polarization observations of far-infrared emission from cold molecular clouds are often used to trace magnetic fields, allowing a probe of the effects of magnetic fields on the star formation process. We present inferred magnetic field maps of the Pillars of Creation region within the larger M16 emission nebula, derived from dust polarization data in the 89 and 154μm continuum using the Stratospheric Observatory For Infrared Astronomy/High-resolution Airborne Wideband Camera. We derive magnetic field strength estimates using the Davis–Chandrasekhar–Fermi method. We compare the polarization and magnetic field strengths to column densities and dust continuum intensities across the region to build a coherent picture of the relationship between star-forming activity and magnetic fields in the region. The projected magnetic field strengths derived are in the range of ∼50–130μG, which is typical for clouds of similarn(H2), i.e., molecular hydrogen volume density on the order of 104–105cm−3. We conclude that star formation occurs in the finger tips when the magnetic fields are too weak to prevent radial collapse due to gravity but strong enough to oppose OB stellar radiation pressure, while in the base of the fingers the magnetic fields hinder mass accretion and consequently star formation. We also support an initial weak-field model (<50μG) with subsequent strengthening through realignment and compression, resulting in a dynamically important magnetic field. 
    more » « less
    Free, publicly-accessible full text available July 16, 2026
  2. Context. Dense and cold molecular cores and filaments are surrounded by an envelope of translucent gas. Some of the low-Jemission lines of CO and HCO+isotopologues are more sensitive to the conditions either in the translucent environment or in the dense and cold one because their intensities result from a complex interplay of radiative transfer and chemical properties of these heterogeneous lines of sight (LoSs). Aims. We extend our previous single-zone modeling with a more realistic approach that introduces multiple layers to take account of possibly varying conditions along the LoS. We used the IRAM-30m data from the ORION-B large program toward the Horsehead nebula in order to demonstrate our method’s capability and effectiveness. Methods. We propose a cloud model composed of three homogeneous slabs of gas along each LoS, representing an outer envelope and a more shielded inner layer. We used the non-LTE radiative transfer code RADEX to model the line profiles from the kinetic temperature (Tkin), the volume density (nH2), kinematics, and chemical properties of the different layers. We then used a fast and robust maximum likelihood estimator to simultaneously fit the observed lines of the CO and HCO+isotopologues. To limit the variance on the estimates, we propose a simple chemical model by constraining the column densities. Results. A single-layer model cannot reproduce the spectral line asymmetries that result from a combination of different radial velocities and absorption effects among layers. A minimal heterogeneous model (three layers only) is sufficient for the Horsehead application, as it provides good fits of the seven fitted lines over a large part of the studied field of view. The decomposition of the intensity into three layers allowed us to discuss the distribution of the estimated physical or chemical properties along the LoS. About 80% of the12CO integrated intensity comes from the outer envelope, while ~55% of the integrated intensity of the (1 − 0) and (2 − 1) lines of C18O comes from the inner layer. For the lines of the13CO and the HCO+isotopologues, integrated intensities are more equally distributed over the cloud layers. The estimated column density ratioN(13CO)/N(C18O) in the envelope increases with decreasing visual extinction, and it reaches 25 in the pillar outskirts. While the inferredTkinof the envelope varies from 25 to 40 K, that of the inner layer drops to ~15 K in the western dense core. The estimatednH2in the inner layer is ~3 × 104cm−3toward the filament, and it increases by a factor of ten toward dense cores. Conclusions. Our proposed method correctly retrieves the physical and chemical properties of the Horsehead nebula. It also offers promising prospects for less supervised model fits of wider-field datasets. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. Context.Observations of ionic, atomic, or molecular lines are performed to improve our understanding of the interstellar medium (ISM). However, the potential of a line to constrain the physical conditions of the ISM is difficult to assess quantitatively, because of the complexity of the ISM physics. The situation is even more complex when trying to assess which combinations of lines are the most useful. Therefore, observation campaigns usually try to observe as many lines as possible for as much time as possible. Aims.We have searched for a quantitative statistical criterion to evaluate the full constraining power of a (combination of) tracer(s) with respect to physical conditions. Our goal with such a criterion is twofold. First, we want to improve our understanding of the statistical relationships between ISM tracers and physical conditions. Secondly, by exploiting this criterion, we aim to propose a method that helps observers to make their observation proposals; for example, by choosing to observe the lines with the highest constraining power given limited resources and time. Methods.We propose an approach based on information theory, in particular the concepts of conditional differential entropy and mutual information. The best (combination of) tracer(s) is obtained by comparing the mutual information between a physical parameter and different sets of lines. The presented analysis is independent of the choice of the estimation algorithm (e.g., neural network orχ2minimization). We applied this method to simulations of radio molecular lines emitted by a photodissociation region similar to the Horsehead Nebula. In this simulated data, we considered the noise properties of a state-of-the-art single dish telescope such as the IRAM 30m telescope. We searched for the best lines to constrain the visual extinction,AVtot, or the ultraviolet illumination field,G0. We ran this search for different gas regimes, namely translucent gas, filamentary gas, and dense cores. Results.The most informative lines change with the physical regime (e.g., cloud extinction). However, the determination of the optimal (combination of) line(s) to constrain a physical parameter such as the visual extinction depends not only on the radiative transfer of the lines and chemistry of the associated species, but also on the achieved mean signal-to-noise ratio. The short integration time of the CO isotopologueJ= 1 − 0 lines already yields much information on the total column density for a large range of (AVtot,G0) space. The best set of lines to constrain the visual extinction does not necessarily combine the most informative individual lines. Precise constraints on the radiation field are more difficult to achieve with molecular lines. They require spectral lines emitted at the cloud surface (e.g., [CII] and [CI] lines). Conclusions.This approach allows one to better explore the knowledge provided by ISM codes, and to guide future observation campaigns. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  4. Abstract Located in the Large Magellanic Cloud and mostly irradiated by the massive star cluster R136, 30 Doradus is an ideal target to test the leading theory of grain alignment and rotational disruption by RAdiative Torques (RATs). Here, we use publicly available polarized thermal dust emission observations of 30 Doradus at 89, 154, and 214 μ m using SOFIA/HAWC+. We analyze the variation of the dust polarization degree ( p ) with the total emission intensity ( I ), the dust temperature ( T d ), and the gas column density ( N H ) constructed from Herschel data. The 30 Doradus complex is divided into two main regions relative to R136, namely North and South. In the North, we find that the polarization degree first decreases and then increases before decreasing again when the dust temperature increases toward the irradiating cluster R136. The first depolarization likely arises from the decrease in grain alignment efficiency toward the dense medium due to the attenuation of the interstellar radiation field and the increase in the gas density. The second trend (the increase of p with T d ) is consistent with the RAT alignment theory. The final trend (the decrease of p with T d ) is consistent with the RAT alignment theory only when the grain rotational disruption by RATs is taken into account. In the South, we find that the polarization degree is nearly independent of the dust temperature, while the grain alignment efficiency is higher around the peak of the gas column density and decreases toward the radiation source. The latter feature is also consistent with the prediction of rotational disruption by RATs. 
    more » « less
  5. Abstract We present H -band (1.65 μ m) and SOFIA HAWC+ 154 μ m polarization observations of the low-mass core L483. Our H -band observations reveal a magnetic field that is overwhelmingly in the E–W direction, which is approximately parallel to the bipolar outflow that is observed in scattered IR light and in single-dish 12 CO observations. From our 154 μ m data, we infer a ∼45° twist in the magnetic field within the inner 5″ (1000 au) of L483. We compare these new observations with published single-dish 350 μ m polarimetry and find that the 10,000 au scale H -band data match the smaller-scale 350 μ m data, indicating that the collapse of L483 is magnetically regulated on these larger scales. We also present high-resolution 1.3 mm Atacama Large Millimeter/submillimeter Array data of L483 that reveals it is a close binary star with a separation of 34 au. The plane of the binary of L483 is observed to be approximately parallel to the twisted field in the inner 1000 au. Comparing this result to the ∼1000 au protostellar envelope, we find that the envelope is roughly perpendicular to the 1000 au HAWC+ field. Using the data presented, we speculate that L483 initially formed as a wide binary and the companion star migrated to its current position, causing an extreme shift in angular momentum thereby producing the twisted magnetic field morphology observed. More observations are needed to further test this scenario. 
    more » « less
  6. Abstract Star formation primarily occurs in filaments where magnetic fields are expected to be dynamically important. The largest and densest filaments trace the spiral structure within galaxies. Over a dozen of these dense (∼10 4 cm −3 ) and long (>10 pc) filaments have been found within the Milky Way, and they are often referred to as “bones.” Until now, none of these bones has had its magnetic field resolved and mapped in its entirety. We introduce the SOFIA legacy project FIELDMAPS which has begun mapping ∼10 of these Milky Way bones using the HAWC+ instrument at 214 μ m and 18.″2 resolution. Here we present a first result from this survey on the ∼60 pc long bone G47. Contrary to some studies of dense filaments in the Galactic plane, we find that the magnetic field is often not perpendicular to the spine (i.e., the center line of the bone). Fields tend to be perpendicular in the densest areas of active star formation and more parallel or random in other areas. The average field is neither parallel nor perpendicular to the Galactic plane or the bone. The magnetic field strengths along the spine typically vary from ∼20 to ∼100 μ G. Magnetic fields tend to be strong enough to suppress collapse along much of the bone, but for areas that are most active in star formation, the fields are notably less able to resist gravitational collapse. 
    more » « less
  7. ABSTRACT We present ALMA Band 7 polarization observations of the OMC-1 region of the Orion molecular cloud. We find that the polarization pattern observed in the region is likely to have been significantly altered by the radiation field of the >104 L⊙ high-mass protostar Orion Source I. In the protostar’s optically thick disc, polarization is likely to arise from dust self-scattering. In material to the south of Source I – previously identified as a region of ‘anomalous’ polarization emission – we observe a polarization geometry concentric around Source I. We demonstrate that Source I’s extreme luminosity may be sufficient to make the radiative precession time-scale shorter than the Larmor time-scale for moderately large grains ($$\gt 0.005\!-\!0.1\, \mu$$m), causing them to precess around the radiation anisotropy vector (k-RATs) rather than the magnetic field direction (B-RATs). This requires relatively unobscured emission from Source I, supporting the hypothesis that emission in this region arises from the cavity wall of the Source I outflow. This is one of the first times that evidence for k-RAT alignment has been found outside of a protostellar disc or AGB star envelope. Alternatively, the grains may remain aligned by B-RATs and trace gas infall on to the Main Ridge. Elsewhere, we largely find the magnetic field geometry to be radial around the BN/KL explosion centre, consistent with previous observations. However, in the Main Ridge, the magnetic field geometry appears to remain consistent with the larger-scale magnetic field, perhaps indicative of the ability of the dense Ridge to resist disruption by the BN/KL explosion. 
    more » « less